lunes, 23 de mayo de 2016

Plasticidad a la carta para salvar cerebros

Un equipo de médicos españoles prueba con éxito un sistema para operar tumores cerebrales considerados inoperables porque afectan a áreas funcionales. La técnica pionera consiste en cambiar las funciones de sitio para poder intervenir. La capacidad de reorganizar el cerebro abre un universo de posibilidades.
Cuando un paciente con un tumor cerebral llega al quirófano, el cirujano tiene una primera limitación importante: no puede extirpar tejidos que le dejen sin funciones como el habla o el movimiento. De hecho, durante la operación se despierta varias veces a la persona para comprobar que la zona en la que el cirujano toca no le va a dejar sin alguna de sus funciones esenciales. Si el tumor afecta a una de estas áreas ‘elocuentes’, la norma es quitar solo hasta donde se pueda y esperar a ver cómo evoluciona la enfermedad.
“Los neurocirujanos vemos realidades muy desagradables, pacientes que se nos mueren delante de nosotros”, explica el doctor Juan Antonio Barcia, jefe del servicio de neurocirugía del hospital Clínico San Carlos de Madrid. Fue uno de estos casos extremos el que obligó al médico y su equipo a pensar en nuevas ideas. En el año 2007 llegó a su consulta una paciente con un tumor en el área que alberga la producción del lenguaje. “Se trataba de un tumor agresivo y nos planteamos que teníamos que hacer algo”, recuerda Barcia. En la desesperación por intentar salvar a la mujer, el cirujano y su equipo tuvieron una idea: ¿y si intentaban trasladar las funciones afectadas por el tumor y trataban de operar con seguridad después? Los médicos pusieron en práctica una estrategia para mover la función del lenguaje de sitio con estimulación magnética transcraneal, pero la evolución del tumor fue tan rápida que la paciente falleció a los pocos meses. Aun así, la idea ya había germinado en su cabeza.
Casi una década después, el doctor Barcia y la neuropsicóloga Paola Rivera presentan en el Journal of Neurosurgery un trabajo en el que resumen la aplicación de una nueva técnica en cinco pacientes con tumor cerebral con la que han conseguido algo inédito: cambiaron las funciones de sitio para poder operar y retirar un porcentaje mayor de tejidos tumorales. “Estamos provocando que una zona del cerebro pierda una función, porque nos interesa, y estamos facilitando que aparezca en otra distinta. Es como un juego de manos neurobiológico”, explica Barcia. ¿Cómo lo hacen? Básicamente los médicos intervienen una primera vez al paciente para ver qué cantidad del tumor pueden extirpar e introducen una manta de electrodos a nivel subdural en las zonas donde afecta a las funciones. En las siguientes tres o cuatro semanas se pone en marcha un proceso progresivo en el que la manta produce descargas eléctricas cada vez de mayor intensidad para anular artificialmente la función (crear una “lesión virtual”) y que el cerebro comience a trasladar esa función a zonas adyacentes.
Los parches se colocan sobre la zona elocuente afectada por el tumor

“Vamos subiendo gradualmente la intensidad y se le va provocando un pequeño déficit”, explica Rivera. Si el área afectada es la del habla, el paciente se ejercita hablando, si es un área motora, se practica una y otra vez el movimiento. “Mediante rehabilitación intensiva, el paciente  ejercita continuamente esa función y al poco tiempo vuelve a tener la misma capacidad funcional”. Solo que esta vez la función la han asumido nuevas zonas del cerebro y grupos de neuronas no afectados por el tumor. Una vez hecho esto, el cirujano puede volver a operar y extirpar la zona afectada, que ya no se ocupa del habla o del movimiento. Dicho en palabras sencillas, es como si Barcia y su equipo movieran los “muebles” a otra “habitación” del cerebro para poder operar sin romper nada.
La idea se les ocurrió observando los efectos que provoca el propio tumor sobre la plasticidad en el cerebro de los pacientes. Cuando el cáncer daña la zona del habla, por ejemplo, los científicos observan cómo las áreas adyacentes van asumiendo estas funciones a medida que avanzan los daños, en un ejemplo de plasticidad cerebral que también se produce cuando la persona sufre un ictus, un traumatismo e incluso una herida de bala. Si el daño es masivo, en ocasiones algunas funciones son asumidas en las áreas análogas del otro hemisferio cerebral. A partir de estas pistas y los trabajos de otros especialistas como el francés Hugues Duffau, el doctor Barcia comprendió que podía intentar acelerar ese proceso con electrodos y mejorar las opciones de sus pacientes.

El proceso se entiende mejor cuando el cirujano nos muestra dos neuroimágenes de un paciente antes y después del proceso. En el primer escáner la función del habla se observa en el hemisferio izquierdo, donde el tumor invade el área de Broca. Una resonancia tomada después del proceso con el manto de electrodos muestra esa zona apagada: el lenguaje se activa ahora en el otro hemisferio cerebral, en el derecho. “La función del lenguaje que antes estaba representada en la zona del tumor, en el lado izquierdo, había pasado a estar representada en el lado derecho”, explica Barcia. “Con lo cual pudimos hacer una resección completa del tumor sin afectar el lenguaje. Si no hubiésemos hecho esto, posiblemente los pacientes habrían muerto o habrían tenido déficits funcionales severos durante su periodo de supervivencia”.
“Me trasladaron el habla y los movimientos de la mano hacia el otro hemisferio del cerebro”, explica Luis Enrique, un paciente de 43 años con un oligodendroglioma que afectaba a la zona motora y del habla. En su caso, la sola presencia de este tumor en el hemisferio izquierdo de su cerebro le hacía vivir atemorizado. Ahora es un caso único en el mundo. Luis Enrique vive sin una buena parte de su cerebro, pero las funciones que el área enferma asumía las puede realizar con su hemisferio sano. “He vuelto a vivir. Ha sido una segunda oportunidad”, asegura.
Rafael tiene 54 años. Hace tres años su vida cambió cuando le explicaron que tenía un tumor cerebral que afectaba a su sistema motor, lo que se traducía en una pérdida progresiva de la movilidad en las manos. Tras entrar en el programa del doctor Barcia y someterse a una segunda cirugía tras el procedimiento de la manta con electrodos, Rafael no tiene restos del tumor y puede mover su mano derecha con cierta normalidad. Aprendió a controlar los movimientos de la mano con el otro hemisferio y, una vez trasladada la función, se le pudo extirpar el tumor prácticamente por completo. “En la parte del cerebro en la que controlaba mi mano derecha, ahora mismo tengo un agujero”, asegura. “O sea, yo tengo las funciones pero por otro lado del cerebro. Soy un bicho raro”.

Rafael y Luis Enrique son solo dos de los casos tratados con este sistema hasta ahora. En el caso de una mujer de 52 años, Barcia y su equipo consiguieron cambiar de hemisferio las dos lenguas que hablaba, rumano y español, para después operarla y retirar una mayor cantidad del tumor que le afectaba. En el caso de otra mujer de 34 años, con el área de Wernicke afectada (la zona que ‘traduce’ los significados del lenguaje) también se operó con éxito. Solo uno de los cinco casos acabó con la muerte del paciente por la rápida progresión del tumor.

“En los cinco pacientes el protocolo de prerrehabilitación tuvo como resultado el desplazamiento de áreas elocuentes dentro del tumor”, escriben los autores del estudio. “Y lo que es más, en todos los casos la resonancia magnética funcional mostró la supresión de la activación en áreas elocuentes previamente activadas”. Para comprender la mejora que supone la técnica a la hora de extirpar una mayor cantidad de tejido tumoral, los investigadores dan un dato: el volumen medio de tumor que queda en los pacientes tras la primera operación es de unos 29 cm3, mientras que en la segunda operación la media está en torno a 10 cm3. No es un dato menor, teniendo en cuenta que el principal factor de supervivencia en estos gliomas es el tamaño de la resección del tumor.
Pero el logro de mayor alcance es el de haber podido cambiar las funciones de sitio. El español Álvaro Pascual-Leone, profesor de neurología en la Escuela Médica de Harvard y uno de los especialistas en neurociencia más reconocidos del mundo, que participa en el trabajo. “El resultado confirma la visión que tenemos del cerebro como algo que está cambiando constantemente y que siempre te sorprende”, explica. “Pero una cosa es la teoría y otra demostrar que es posible”. En su opinión lo más importante es que “uno esperaría encontrar disfunciones después de trasladar las funciones a nuevas áreas, pero resulta que son mayores los beneficios”. Marcos Ríos es neuropsicólogo y participó en el diseño de las pruebas para obtener las neuroimágenes. Una noche se quedó para analizar los datos y al ver que la función del lenguaje de un paciente había cambiado de hemisferio pensó que se había equivocado. “Eran las 4 de la mañana y dije: no me lo puedo creer”, recuerda. “Me parecía pura magia, hasta el punto de que pensé que podía haber analizado mal los datos y los revisé desde el principio”.

Para Juan Pablo Romero, neurólogo en la unidad de daño cerebral del hospital Beata María Ana que no ha participado en el estudio, lo más sorprendente es que el trabajo de Barcia muestra que las áreas cerebrales primarias no están predeterminadas. “Sabíamos que en el cerebro había párrafos escritos con tinta indeleble, que eran las zonas motora, sensitiva, del lenguaje… que tenían una función predeterminada. Lo que vemos con este estudio es que esas zonas de tinta indeleble se pueden modificar”. “La aplicación es interesante y sorprendente”, opina Santiago Canals, investigador del Instituto de Neurociencias de Alicante especialista en plasticidad. En su laboratorio trabajan alterando los mapas de conectividad y reorganizando los flujos de información en el cerebro de los ratones. “La idea de que podías alterar la representación funcional del córtex se ha teorizado desde los años 90 por gente como Michael Merzenich”, recuerda Canals. “Y se había hecho algo en animales, pero esta aplicación demuestra que el sistema es mucho más plástico de lo que pensamos”. Lo interesante de esta versatilidad del cerebro es que a priori se podría entrenar a las células en la corteza primaria a hacer cosas que no han hecho nunca. “Esto tiene aplicaciones como enseñar a un paciente a mover una prótesis entrenando neuronas para que la muevan que no tienen que ser neuronas de la corteza motora”.
“El hecho de que nosotros podamos modular o dirigir los cambios plásticos en el cerebro podría dar lugar a muchas aplicaciones”, apunta el doctor Barcia. En el horizonte se dibujan algunas de las más prometedoras. ¿Se podría aplicar a la rehabilitación de funciones perdidas por traumatismos o ictus, o incluso a tratar enfermedades degenerativas reorganizando el cerebro antes de que se pierda la memoria? Una de las posibilidades, apunta Pascual-Leone, es acelerar la reorganización del cerebro cuando alguien se está adaptando a una prótesis de brazo o de pierna. O mejorar el pronóstico en niños con encefalitis de Rasmussen, en las que hay que retirar un hemisferio completo. “Fomentar que las funciones no dañadas se trasladen cuanto antes permitiría una resección más rápida y amplia”, asegura. Por otro lado, ya sabemos que si combinas la estimulación con el entrenamiento se acelera el aprendizaje, “también en personas sin lesiones cerebrales”, apunta el neurocientífico. “En este caso hemos visto que es tan importante apretar el acelerador (la estimulación) como llevar el volante (la rehabilitación) y este conocimiento podría ser útil para diseñar nuevas aplicaciones”.
En cuanto a la posibilidad de mover las funciones “a la carta”, los autores se muestran prudentes porque aún hay algunas limitaciones fisiológicas. “El problema son los cables”, asegura Canals. En otras palabras, que no todas las áreas podrían recuperar todas las funciones. “Plasticidad sí, y esto demuestra que es posible”, explica, “pero de ahí a llevarnos a mover las funciones en la corteza como si fueran piezas a nuestro antojo… Para eso tenemos limitaciones físicas de conectividad”. “El mapa de posibilidades depende del mapa de carreteras”, admite Pascual-Leone. “Si existe un camino entre dos áreas, por pequeño que sea, el cerebro es capaz de convertirlo en una autopista. Pero conectar dos zonas sin vías es un milagro, y en neurociencia los milagros no existen”.

Barcia también cree que es necesario ampliar el número de casos y comprender mejor en qué condiciones y hacia dónde se dirige esa trasferencia de funciones. “Hay que resolver todavía muchísimos interrogantes, como si el cambio de la función es permanente o si vuelve otra vez a la zona previa después de cierto tiempo”, explica. Mientras tanto, y en lo que se mejora la técnica y el conocimiento, el cirujano ya ha conseguido en parte lo que le quitaba el sueño: poder retirar de los cerebros de sus pacientes la mayor cantidad de tumor posible sin afectar a sus funciones esenciales.


FUENTE: vozpopuli.com

miércoles, 11 de mayo de 2016

Científicos coreanos desarrollan un modelo 3D de un tumor cerebral

Un equipo de científicos surcoreanos ha desarrollado un modelo tridimensional de un tumor cerebral, que permite observar los avances del quiste fuera del cuerpo humano y descubrir cómo y por qué un tumor desarrolla resistencia contra los medicamentos anticancergígenos.

Unos científicos especializados en bioingeniería del Instituto Avanzado de Ciencia y Tecnología de Corea (KAIST), liderado por el profesor Kim Pil Nam, anunció el miércoles 11 haber concretado dicho modelo de tumor, consistente en una matriz en 3D que permite cultivar células tumorales.

Gracias a este modelo, los investigadores consiguieron verificar también el proceso por el cual las células tumorales provocan metástasis en los tejidos circundantes.


FUENTE: KBS World Radio

Una terapia experimental detiene los tumores cerebrales resistentes al tratamiento

Un equipo de investigadores del Centro Médico del Hospital Infantl de Cincinnati, en Estados Unidos, informa este lunes en la revista 'Cancer Cell' sobre una terapia experimental que en pruebas de laboratorio sobre células humanas y modelos de ratón detiene agresivos cánceres cerebrales mortales llamados glioblastomas resistentes al tratamiento y gliomas de alto grado.

  Al probar una estrategia terapéutica de varios pasos, los científicos han encontrado una manera de utilizar una terapia génica para apagar un gen implicado en la formación de gliomas de alto grado llamado Olig2. La proteína codificada por Olig2 se expresa en la mayoría de los gliomas y la extracción del gen Olig2 detiene el crecimiento del tumor, mientras la elimina de las células productoras de Olig2 bloquea la formación de tumores.

  "Encontramos que la eliminación de la división de las células que expresan Olig2 bloquea el inicio y la progresión del glioma en modelos animales y muestran que Olig2 es el árbitro molecular de la adaptabilidad genética que hace de los gliomas de alto grado agresivos y resistentes al tratamiento", explica el doctor Qing Richard, investigador principal y director científico del Centro de Tumores Cerebrales en el Hospital Infantil de Cincinnati.

  "Al encontrar una manera de inhibir Olig2 en las células que forman tumores, hemos sido capaces de cambiar la formación de las células tumorales y sensibilizarlas al tratamiento molecular. Esto sugiere una prueba de principio para la terapia estratificada en distintos subtipos de gliomas malignos", añade.

  El estudio actual se puede aplicar a los gliomas cerebrales de alto grado y un tumor fatal del tronco cerebral llamado DIPG (glioma pontino intrínseco difuso), que expresa Olig2 y es inoperable debido a su ubicación en una región del cerebro que controla las funciones vitales. Incluso si estos tipos de cáncer responden inicialmente a un tratamiento específico, se adaptan mediante la búsqueda de soluciones genéticas/moleculares, evaden el tratamiento y continúan creciendo.

  Los investigadores advierten que el enfoque terapéutico experimental que describen requiere una amplia investigación adicional y sigue estando lejos de posibles pruebas clínicas, pero el doctor Lu dice que los datos son un avance importante en la investigación. El estudio actual ha detectado una potencial grieta en la armadura molecular de estos tipos de cáncer que --incluso después de una ronda inicial de un tratamiento exitoso-- casi siempre provocan recaída y matan a los pacientes que los reciben.

  Los cánceres se forman a partir de precursores de células de soporte del cerebro llamadas oligodendrocitos, que ayudan a generar el aislamiento de las conexiones neuronales. Olig2 aparece en las primeras etapas de desarrollo de las células del cerebro. A través de un extenso análisis de células cancerosas del cerebro humano y modelos de ratones, los científicos observaron la expresión Olig2 en la etapa inicial de la división y la reproducción de las células en los tumores.

  Olig2 contribuye a la transformación de las células precursoras normales en células malignas anormales que se dividen incontrolablemente. En el contexto de la formación de células de cáncer, los autores vieron procesos moleculares de accionamiento de Olig2 que permiten que la formación de células de glioma sea altamente adaptable y susceptible a los efectos promotores de tumor de cambios genéticos adicionales.

  Luego, los investigadores decidieron eliminar la división celular de células OLIG2-positivas durante la formación de tumores. Para utilizar un enfoque que se traduzca más rápido del laboratorio a la clínica, probaron con éxito una terapia génica que utiliza un virus del herpes simple (vector viral) diseñado para entregar un gen suicida en la replicación de las células cancerosas OLIG2 positivas. Lo administraron junto a un fármaco anti-herpes ya en uso clínico, ganciclovir (GCV). Los tumores en los que se eliminó OLIG2 no fueron capaces de crecer.

  Los investigadores también encontraron que después de la inhibición de Olig2, la formación de células cancerosas del cerebro cambió de dirección y composición molecular, desde células similares a los precursores de oligodendrocitos a asumir características de las células del cerebro similares a astrocitos. Continuaron formando tumores a pesar de que estas nuevas células de cáncer de cerebro como astrocitos producen el gen del receptor del factor de crecimiento epidérmico (EGFR) a altos niveles.

  El EGFR es un objetivo común y eficaz para los medicamentos de quimioterapia usados clínicamente para el tratamiento de tumores como el cáncer de mama. En repetidas pruebas en modelos de ratón, la inhibición de Olig2 impulsó las células formadoras de glioma a transformarse en células de similares a astrocitos que expresan EGFR.

  Luego, en pruebas posteriores y repetidas en células de cáncer como astrocitos en modelo de ratón y humanas transformadas, los investigadores trataron las células con un fármaco de quimioterapia dirigido a EGFR llamado gefitinib. El tratamiento detuvo el crecimiento de nuevas células tumorales y la expansión tumoral.

  Según Lu, con pruebas adicionales, la verificación y el refinamiento de la terapia experimental podría ser especialmente útil en la prevención de la recurrencia de cáncer cerebral en pacientes que han sido sometidos a una ronda inicial de un tratamiento exitoso. Añade que el nuevo enfoque de tratamiento es probable que se emplee en combinación con otras terapias existentes, como la radiación, la cirugía, otras quimioterapias y tratamientos moleculares específicos.


FUENTE: canarias7.es

miércoles, 4 de mayo de 2016

Desarrollado un tejido de nanofibras para tratar las zonas operadas de cáncer

Investigadores del Hospital Sant Joan de Déu y de la Universidad Politécnica de Cataluña (UPC), a través de la spin-off Cebiotex, han desarrollado un tejido de nanofibras biodegradable (reabsorbible por el organismo) para hacer tratamientos locales del cáncer.

El tejido, que se puede impregnar con fármacos antitumorales, sirve para que los cirujanos puedan recubrir, durante la intervención dirigida a extirpar el tumor, la zona operada para eliminar los restos tumorales que puedan haber quedado.

El producto ya está patentado por el Hospital Sant Joan de Déu y la UPC, y licenciado en Cebiotex, que tiene su sede en el Parque Científico de Barcelona (PCB).

Según ha explicado la UPC en un comunicado, este sistema de administración local del tratamiento antitumoral resulta menos tóxico y más efectivo que el habitual tratamiento de consolidación después de la cirugía, la radioterapia.

El objetivo final sería poder evitar los tratamientos de radioterapia y los efectos secundarios que conlleva.

El tratamiento consiste en la colocación de la membrana en el lecho quirúrgico después de la extracción del tumor, para que actúe directamente en la zona afectada y con altas concentraciones de fármaco.

Los investigadores han probado la eficacia de este nuevo sistema de administración del tratamiento antitumoral en animales y han iniciado los trámites para obtener la autorización de la Agencia Europa del Medicamento (EMA), y así poder iniciar las fases pre-clínica y clínica de su primer fármaco orientado al tratamiento de los Sarcomas de Tejidos Blandos (STS).

Para desarrollar el proyecto, en 2012 se constituyó Cebiotex, una empresa de base tecnológica surgida del InnotexCenter/INTEXTER de la UPC, participada por 58 inversores privados y el Hospital Sant Joan de Déu.

Uno de los cofundadores es Joan Bertran, un ingeniero textil que vivió muy de cerca la muerte de la hija de un amigo y propuso a los investigadores de la UPC y de Sant Joan de Déu trabajar en la creación de biomateriales que dieran una solución médica a los tumores.

El primer producto ha sido diseñado para tratar los sarcomas de tejidos blandos, pero en el futuro se desarrollarán nuevos biomateriales para tratar otros tumores infantiles y de adultos.

En los adultos se desarrollarán productos para el cáncer de colon, de mama, de ovario, de páncreas, y glioblastoma (tumor cerebral), y en niños las dianas serán cánceres como el neuroblastoma, glioblastoma, rabdomiosarcoma, osteosarcoma o el sarcoma de Ewing.

El cáncer es la enfermedad que causa más muertes infantiles en toda Europa: anualmente, mueren 300 menores de 14 años en España, y 3.000 en Europa.

Se estima que en todo el mundo se diagnostican 250.000 nuevos casos al año, 90.000 de los cuales no sobreviven.

Sin embargo, en los últimos 20 años, la Agencia de Alimentos y Medicamentos estadounidense sólo ha aprobado tres nuevos fármacos antitumorales para uso pediátrico, ya que por su baja frecuencia (en comparación con el cáncer en adultos) no suele recibir mucha atención por parte de la industria farmacéutica ni los fondos de inversión que aceleran el desarrollo de nuevos fármacos.

El pasado 15 de abril Cebiotex S.L. lanzó la segunda ronda de financiación puente de 300.000 euros orientada a inversores privados que quieran adquirir participaciones en la empresa, a través de la plataforma europea de crowdfunding en biotecnología CapitalCell (http://www.capitalcell.net/), que recientemente ha sido acreditada por la Generalitat como entidad de financiación alternativa.


FUENTE: El Periódico de Aragón